skip to main content


Search for: All records

Editors contains: "Arkhipova, Irina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Arkhipova, Irina (Ed.)
    Abstract

    Horizontal transfer of transposable elements (TEs) is an important mechanism contributing to genetic diversity and innovation. Bats (order Chiroptera) have repeatedly been shown to experience horizontal transfer of TEs at what appears to be a high rate compared with other mammals. We investigated the occurrence of horizontally transferred (HT) DNA transposons involving bats. We found over 200 putative HT elements within bats; 16 transposons were shared across distantly related mammalian clades, and 2 other elements were shared with a fish and two lizard species. Our results indicate that bats are a hotspot for horizontal transfer of DNA transposons. These events broadly coincide with the diversification of several bat clades, supporting the hypothesis that DNA transposon invasions have contributed to genetic diversification of bats.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  2. Arkhipova, Irina (Ed.)
    Abstract Genome size has been measurable since the 1940s but we still do not understand genome size variation. Caenorhabditis nematodes show strong conservation of chromosome number but vary in genome size between closely related species. Androdioecy, where populations are composed of males and self-fertile hermaphrodites, evolved from outcrossing, female-male dioecy, three times in this group. In Caenorhabditis, androdioecious genomes are 10–30% smaller than dioecious species, but in the nematode Pristionchus, androdioecy evolved six times and does not correlate with genome size. Previous hypotheses include genome size evolution through: 1) Deletions and “genome shrinkage” in androdioecious species; 2) Transposable element (TE) expansion and DNA loss through large deletions (the “accordion model”); and 3) Differing TE dynamics in androdioecious and dioecious species. We analyzed nematode genomes and found no evidence for these hypotheses. Instead, nematode genome sizes had strong phylogenetic inertia with increases in a few dioecious species, contradicting the “genome shrinkage” hypothesis. TEs did not explain genome size variation with the exception of the DNA transposon Mutator which was twice as abundant in dioecious genomes. Across short and long evolutionary distances Caenorhabditis genomes evolved through small structural mutations including gene-associated duplications and insertions. Seventy-one protein families had significant, parallel decreases across androdioecious Caenorhabditis including genes involved in the sensory system, regulatory proteins and membrane-associated immune responses. Our results suggest that within a dynamic landscape of frequent small rearrangements in Caenorhabditis, reproductive mode mediates genome evolution by altering the precise fates of individual genes, proteins, and the phenotypes they underlie. 
    more » « less
  3. Arkhipova, Irina (Ed.)
    Abstract Microchromosomes are common yet poorly understood components of many vertebrate genomes. Recent studies have revealed that microchromosomes contain a high density of genes and possess other distinct characteristics compared with macrochromosomes. Whether distinctive characteristics of microchromosomes extend to features of genome structure and organization, however, remains an open question. Here, we analyze Hi-C sequencing data from multiple vertebrate lineages and show that microchromosomes exhibit consistently high degrees of interchromosomal interaction (particularly with other microchromosomes), appear to be colocalized to a common central nuclear territory, and are comprised of a higher proportion of open chromatin than macrochromosomes. These findings highlight an unappreciated level of diversity in vertebrate genome structure and function, and raise important questions regarding the evolutionary origins and ramifications of microchromosomes and the genes that they house. 
    more » « less
  4. Arkhipova, Irina (Ed.)
    Abstract Males and females of the same species share the majority of their genomes, yet they are frequently exposed to conflicting selection pressures. Gene regulation is widely assumed to resolve these conflicting sex-specific selection pressures, and although there has been considerable focus on elucidating the role of gene expression level in sex-specific adaptation, other regulatory mechanisms have been overlooked. Alternative splicing enables different transcripts to be generated from the same gene, meaning that exons which have sex-specific beneficial effects can in theory be retained in the gene product, whereas exons with detrimental effects can be skipped. However, at present, little is known about how sex-specific selection acts on broad patterns of alternative splicing. Here, we investigate alternative splicing across males and females of multiple bird species. We identify hundreds of genes that have sex-specific patterns of splicing and establish that sex differences in splicing are correlated with phenotypic sex differences. Additionally, we find that alternatively spliced genes have evolved rapidly as a result of sex-specific selection and suggest that sex differences in splicing offer another route to sex-specific adaptation when gene expression level changes are limited by functional constraints. Overall, our results shed light on how a diverse transcriptional framework can give rise to the evolution of phenotypic sexual dimorphism. 
    more » « less